收款宝pos机签到不成功怎么办?
我们公司是机器售后中心
机器免费保修,维修快,效率高,
机器显示错误代码 请联系我
机器显示签到失败 请联系我
机器刷卡后未到账 请联系我
机器刷卡成功后没出小票 请联系我。
只要是机器方面的问题,都可以联系进行咨询。
第一个,中国的大模型很多,但是基于大模型开发出来的AI原生应用却非常少。有报道说,截止10月份国内已经发布了238个大模型,而6月份的时候这个数字是79个,相当于4个月就翻了3倍。但中国有多少AI原生应用呢?我想在座的各位,很少有人能说出一二个来。如果我们看国外,除了有几十个基础大模型之外,实际上,已经有了上千个AI原生应用,这是在中国市场上没有的。而我认为,人类进入AI时代的标志,不是产生很多的大模型,而是产生很多的AI原生应用。为什么这么说?我们看PC时代,基本上只有Windows一个操作系统,但是基于Windows系统开发的软件有很多;移动互联网时代,主流操作系统也只有安卓和iOS两家,而移动应用有800万之多。大模型时代其实也是类似,大模型本身是一个基础底座,类似操作系统,那么最终开发者要依赖为数不多的大模型来开发出各种各样的原生应用。所以,不断地重复开发基础大模型是对社会资源的极大浪费。
AI原生时代,我们需要100万量级的AI原生应用,但是不需要100个大模型。如果我们的产业政策能够更加鼓励基于大模型的AI原生应用,我们一定能够构建起一个繁荣的AI生态,推动新一轮的经济增长。
第二个冷思考,由于没有智能涌现能力,专用大模型的价值其实非常有限。我看到一个现象,很多行业、企业,甚至很多城市都在买卡、囤芯片,建立智算中心,想要从头训练自己的专用大模型。殊不知这样炼出来的大模型是没有智能涌现能力的。因为,只有当你的模型的参数规模足够大,训练数据量足够多并且能够不断投入,进行迭代,才能够产生智能涌现,大模型才能具有触类旁通的能力。也就是说,你没教过的东西,它也会了。所以,大模型的产业化模式,应该是把基础模型的通用能力和行业领域的专业知识相结合。也就是大模型套小模型,专用的小模型反应快,成本低,大模型更智能,可以用来兜底。
自从8月31号开放以来,文心大模型的API调用量,呈现了指数级的增长。国内有200多个大模型,上了这个榜单、进了那个排名,但其实调用量是很小的。文心大模型一家的调用量比这200多家大模型的调用量加起来还要多。
刚才说了两个“冷”思考。作为一个在AI领域工作超过十年的从业者,我对大模型和AI原生应用的巨大价值和影响力,都深信不疑。所以我想说一说,AI原生时代的三个“热”驱动。
第一,强大的基础模型,会驱动AI原生应用爆发。中国有领先的基础大模型,这是AI原生应用发展的坚实基础,是底层的能力。3 月16日,百度率先发布了基于文心大模型3.0的文心一言产品,之后快速迭代。
上个月,我们又发布了文心4.0版本,在网站和APP上叫做文心一言专业版。4.0是迄今为止最强大的文心大模型,在理解、生成、逻辑和记忆各方面能力,都有了明显提升。比如,在生成能力上,文心一言除了生成文字内容,还包括图片、视频、数字人等等多模态内容,可实现的创作体裁超过200种,你让他写一首李白风格的诗,写出来就像李白,你让他写一首杜甫风格的诗,写出来就像杜甫,涵盖了几乎所有的写作需求。在逻辑和记忆能力上,相比之前的版本也有了成倍的提升。而AI原生应用,就是基于大模型智能涌现后产生的理解、生成、逻辑和记忆能力而开发出来的应用。这些能力是过去的时代所不具备的,因而才能打开无限的创新空间。作为基础底座,大模型可以支撑无数AI原生应用的开发。但是,直到今天,无论是中国也好,美国也好,我认为最好的AI原生应用还有没出现。就像移动时代诞生了像微信、抖音、Uber这样的“mobile-native”的应用一样,AI原生时代一定会有优秀的AI原生应用是基于这些大模型开发出来的。而深圳有着丰富的场景和深厚的产业基础,在AI原生时代深圳一定会再次成为创新创业的沃土。
发表评论